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1. INTRODUCTION

Remote éensing'and-parametér optimization are two active
space-related research areas. The'purpose of this contract
was twofold: | |

(i) to present to the Mission Planning and Analysis

Division a short course on the basics and state-of-the-

‘art of remote sensing;

(ii) to analyze recent devélopments in parameter

opt;mizafion and determine their implications with

respect to onéboard ggidance.. |

In Section 2, the format of the short course is outlined.
In SecfianB, reSults on parameter optimization are presented.
The Fletchér and Broyden parameter optimization techniques are
deséribed énd compared with the Davidon—Fletcher—Pow'li (DFP)
nethod. Both of these methods have been built into the
NASA-HSC PEACE parameter optimization program. In Section 4
th? Johnson-Kamm parameter guidance schene is discussed and a
method for computing the feedback gains with a single numerical
integration is presented. In Section 5 conclﬁsions and recon-~
mendations for future study are presented, with an emphasis on
the status énd future of parameter optimization based on-board

guidance.



2. RENMOTE SENSING

A'short course was presented during December i971 through
February 1972. The lecturers were members of the University of
Michigan Willow Rﬁn and.High Altitude Engineering lLaboratories.
The format of the course was as follows:

1st and 5rd Weeks: Basics of Remote Sensing and The User

Community. Fundamenfals and definitions of remote sensing,
~user's needs (e;g., agronomists, resource managers, environ-
mentélists, meteorologists, government agencies); basic
mathematics and physics. |

2nd Veek: Multivariant Spectral Analysis. Relevant mathematics

- and physics review; retreval of spectral, spatial, and temporal
parameters; underlying principles of pattern recognition.

L4th and 7th Weeks: Advanced Mathematics and Phxsicé 6f Remote

'Sensing. Physics of spectroscopy, propagation, absorption,
scattering, radiative transfer, geometrical and physical optics,
and physics of sensing. DMathematics associated with the physics,
basic probability and statistics, Fourier series and transforms,

and numerical techniques.

5th Week: The Atmospheric Environment. Basic physics of the

atmosphere, meteorological measurements from space vehicles,
atmospheric parameters pertinent to environmental problems,

circulation, sources and sinks for atmospheric pollutants.

6th Week: Imaging Sensing. Classification of passive and active

sensors. Passive: multispectral scanners, infrared scanners.
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Active: high-resolution radar. Characteristics of the sensors,
data reduction, error sources, typical results.

8th Week: Nonimaging Seusing. Fourier transform spectroscopy,

filter radiometry, microwave spectroscopy. Characteristics of

the sensors, data reduction, error sources, typical results.



3. PARAMETER OPTIMIZATION

In Refs. 1-3%, shuttle ascent trajectories are optimized
by representing the steering angle rate as a sequence of e
straight line segments, and then applying the DFP parameter
optimization technique. Eventually parameter dptimization may
be used on-board in the determination of stéering commands. |
If so, then one should attempt to develop schemes which do not
}equire an extensive 1-D search.“'One of the goalé of this
contracf was to determiﬁe the relative performance capabilities
"0f the DFP method and a modified Fletcher's method,®'3 which
does.nbt require an extensive I—D seafch. In,aadition'to this

6 vhich

compériéon, a relatively new method due to Broyden
requires a 1-D searbh was also considered since it is closely
related to both the DFP and Fletcher methods. Both of these

' fechniques have been built into the NASA-MSC PEACE progran. e

3.1 The Parameter Optimization Algorithm

Consider the minimization of the differentiable real-valued
function*
£z o 0, X)) - (3.1)
All of the iteration schemes of this report utilize update
formulas of the form |
+1 k - |
0 g g0, (5.2)

where X(k):: current value of the vector x, X(k+1);5 new-

Py

value of x, o = a scalar parameter (the 1-D search parameter),

H = an nxn matrix which is updated on each iterate, g(k);;fx(x(k})

k:?—
()

é; the gradient of f evaluated at x A particular scheme

b



is defined by the way that it updates H,_ and « . TFirst the
algorithm wili be statéd, and then the underlying theory will
be discussed in Section 3.2. A flowchart of the scheme is
given in Fig. 1. The notation A( )J“EE C‘XT%I—.( )+ o is
employed below. | :

(1) Specify Xos %o Hb,'@L. Calculate'fé;;_f[XO],gOEagEXO]; 
set.J=O. (HO is an arbitrary s&mmetfic, positi?e

definite matrix and «, > 0.)

- (2) Calculate f(J+1)1§5 f[xﬂ.— aJ1HJgJ], where % 5q is the

currgnt estimate of &g and check f(J+1)1< fJ. If
yes, go to (3) if @y =1 or go to a crude step-size
dincrease packageiif dJ1q& 1; if no, go to a crude
step-size decrease package. The resultant step-size
A 'is-dendted by aJ.. , _ 1
.-r-K .
(3) If J=0, go to (5). If J>0, check A@.J./(a;,- AXJ)Z/x.
- If yes, go to (4); if no, decrease ay until the |

inequality is satisfied and then go to (4).

i : : : el -1~ T .
(4) Check 10 83--' AXy € Gy BXgy -
If yes, go to (5); if no, increase ¢y until the

.'ineQuality is satisfied and then go to (5).
(5) Calculate Xj,q=%Xg = aJHJgJ and 83,1+ Check
- . _
A%x LX+ >0 . If yes, go to (6). If no,
increase «j. '
. T . ‘ T
(6) Check AGe L¥y = Afg Ny Ay

If yes, go to (8); if no, go to (7).



(7) Calculate:

‘ T
Ho, = Ko+ AXy AXT o ags 89y Ho
J4+1 T - - : ~
| SRR AT B Ak Gu3)
Go to (9).

(8) Calculate:

- | T _ T
Hoy, = H AX+ A4y Ho e Aoy Ay
o J —

AXS &03 Ax&rA%a. -
o : (3.4)
+ ( Aqw 3A43)< AXr AXJT)
3 AV'rAaj AXy' AG

Go to (9).

.(9)7 If an<j, set aJ+1‘=aJ§ otherwise, set a-¥1*1 Set

g =_J+1:and go to (2). |
| From fhe élgofithm'abovebone can see that ani is the
. desired value of the stepéize,‘and in the terminal iterations
 of the scheme ay—>1 if the scheme is behaving like Newton's
méthod as desired. Fletcherq bases most of his discussion on
the aJ = 1 case and devotes 11ttlo attention to the o 7a1 case.
- In the trajectory optlmlzatlon probléms of this report, the
o #:l‘case occurs more often than not because of the difficulty
of the problem and the ﬁse of finite differvence formulas for
tﬁe gradient calculations. Thué, more details abdut the aJ;#=1
case have been included in this section than in Ref. L,

2.2 Theoretical Basis

The‘algorithm of Section 3.1 is baéically a scheme for
choosing between two formulas for the HJ+1 ~matrix while

vreserving a reasonable stepsize. EIither Eg. (3.3) or (3.4) is



used to define Hy,,. Equation (3.3) is the classibal DF?'
formula, a rank-two formula. ZEguation (5.4) is also a rank-tvwo
formula which has been studied in its own right in Refs. 6 and 7.
The fact that Eq. (3.4) is rank-two may be seen by rewriting it as

- - ' . . _ . .
V Oy - v
HJ' = (I — ._ézggégi > H (I — _‘—A_\‘-'ITA xq > + L¥g AXg
a + 1 AX_T A%;r . J AX:; t\g;r AX;A%T (3 5)

"in Ref. 6, Broyden shows thét'both Bgs. (3.3) and (3.L) are
membefs of his ohe-parametef class of formulas introduced in
: Ref. 9, and that both satisfy the ”quasi—Nveon property',
HJ+1‘5XJ= Lgy- Equation (3.3) results by éhoosing bis Py~
ﬁarameter to be zero while .Eq. (3.4) results if BJ:T/QAngT£>XJ).
Broyden noted that in numerical experiments comparing the use

V-ICf Bgs. (3.3) and (3.4) sevarately and with a 1-D search that

- the algorithnms héd similar éharacte:istics in the early stages
4vbu£ quite different characteristics in.the'terminal stages. This
behavior is explained by the fact that By = 1/(A,gJTz;xJ) nay be
‘near zero in thé'early-stages of the algorithm because the
, . . P

gradien?s may be relatively large (where'lang [;XJ{ =

gJ?1 Xy -'gJTAHXJ ‘ = [ gJ:‘A_xJ( in a quasi-Newton schene
which employs a 1-D search). Since Eq. (3.4) and a 1-D search
for the DFP‘program were required in the simulations, it was an
easy task to also obtain simulations of Broyden‘s‘new method,
i.e., Bq. (3.4) with a 1-D search.
Before considering Iletcher's justification for the basic

algorithm, mention should be made of the occurrence of Egs. (3.3)



and (3.4) in Ref. 7. Since numerous updating formulas for the
H~-matrix have been proposed in the past decade, Greenstadt8
considered the problem of choosing the 'best" update formulas
subject to appropriate cénstraints (e.g.; symmétry and finite-
convergence fof'a quadratic with a 1-D search). After'investi-
gating a number of performance indiceé, Greenstadt found that
~fhe'following optimization problem gave tractable results:

Tﬁﬁimize: F( AHJ) = Tr A(W AHJWAHJT) ' - (3.6)

Subject to:  aH;' = & Hy (symmetry), - (3.7)

| AH, A g& = Axy - HiAgy, (quasi-Nevwton) (3.8)
where Tr( ) = trace of () and W is an arbitrary matrix to be
specifiéd. The expression.obtained for é;HJ by solving‘the above'
_minimization problen involves the arbitfary matrix V. Goldfarb7
found .that W' = Hy, . results in Bg. (3.4) and W o= Hp - |
(sg;"axy)(H;ae; 685 0D / (A8 H; 485072 results in Eq. (3.3),
the DFP formula. He also showed that zT(AHJ l] ~13HJ lo)z > 0,
where z‘g;arbitraryvn-vector,-ﬁhHﬁ|i-ELHJ+1 - HJ in Eq. (5;4),_-
and o Hy o = HJ.+1 - Hj in Eq. (3.3). This means thatlEq, (3.4)
is less likely to tend toward singularity while BEq. (3.3) is less
likely to tend toﬁard unboundedness. Fletcherq dbtained a similar
.'result by a different argument, and this forms the basis of his
algorithm. |
" Let us now consider Fletcher's method.& Denote thé formula
of Eq. (3.3) by H, and the formula of Eq. (3.4) by Hy. Let ¢

be a scalar parameter and define the linear combination

H, _:;'(1-95)110 e - (3.9)



Tt is shown in Ref. L that if ¢ e [0,1], then H¢Apossesses the
following property: If f(x) is a quadratic function with

G = [fX ] positive dexlnlte, then the elgenvalues of G1/2H G 172

i¥j
B (érranged inlorder) tend monotonically to one for any seguence of
vectors Ax. (I.e;, H, tends to.the inverse Hessian G~! in a
1'certain sense.) ‘Note that the property does not require a 1-D
'search In addltlon to thls property, it is shown that 1f

l¢tr[0 11, then B! may diverge from G.

‘Since Eq. (3.9) represents an infinity of formulas, . if it

~is to be useful thefe must exist a rule for Sélecting which value
. of de;[b,1]‘to use on avgivenritérate. Fletcher presenté such a
schemé by noting that a typical pitfall in the classical Davidon
"1_method is the tendency of the updating matrix H to become either

‘_51nvular or unbounded. He shows that if ¢ > s' ', then
fthe elﬂenvalues (A.],.. . ,)\n) df Hﬁ, Hﬁl.(arranged in aécending
order) are such that A; () > Mo () (1 = 1,....,n), which

implies H is Mless singular" than H_ = H .¢—O’.

1EH¢.{¢;1

: and HO;iS'”léss unbounded" than H1."Thus,'a simple test for

‘nearness to singularity would indicate whefher to use Ho or H1,

.4which are the extreme'elements of the class Hﬁ, < [0,1].
Fletcher shows that |

i\ : -

¢ = (i AD'TAX/(A{;‘ AX - z_\.g*z{.&g)

" defines the "rank one' formula

(axs =t aa, 0 AXT =Ry Aag)”

14

(AXJ H:A%I _ : (3.10)

+
J
. ‘&83'

Hy.x‘-j_ - H
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The interesting thing about this formula is that if 4;gTz>x:>O,
then Q é {0,117, ' and the formula does not restrict the
eigenﬁalués 6f H in any way. Thus, one can use the rank one
formula to indicate which value of ¢é§{0,1} should be used by
simply checking the sign of AgTAX - /,\gTH Ag; that is, if

A g?,é.x >0 'is enforced, then Ag?;}x - Ag?HA'g; >0 implies‘

T T

¢ >1 (which means H, should be used) and Ag Ax - Ag HAgXKO

_ implies $< 0 (which means H should be used). If ‘4gTékx -
4;gTH,ég = 0, then Hy is used to avoid singularity. Note that
ithié~teét is sfep_(6) of Section 3.1. | | - ' N

" The oﬁly other steps in the algorithm which need to be
discussed are steps (3) and (4). Step (3) is a check to determine
~if the stepsize ié S0 largé that an ﬁnreasonably small_decrease in
the function is attained. That is, | N |
A_ fgpq.= 5 ¢ gJTLLxJ + 0(4;2) o B (3.11)

- dimplies | » ' _ o '
o | | /_\fJ/(gJT&xJ) =1+0(2). o (342)
 If-O 4?AfJ/gJTA>$J<<< 1,-then the aecréasé in cost is g?reasonably
smail with respect to the steepness of the gradient.

Step (4) is a ”fiiter” for the test
| ngy axy>0. - (3.13)
It was noted in a number of simuiations before the'inseftion of
stép (4) that condition (3.13) was violated. It is well known
thatlif f is bounded from below, then there exisfs a‘larger valué

of aJ,which will cause the inequality to bé satisfied, and in

Fletcher's paper a scheme for increasing a5 1s presented. However,
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this scheme might result in uumerous costly gradient evaluations.
(In the problems of the next sectien, a single gradient is
approximatelj as costly as fourteen to eiéhteen function evalua~
tioné ) Since gradlent calculations are so costly, an approximate
test had to be dev1oed to avoid the calculation of more than one
gradient per iteration, and step (4) . is the result. |
It was noted that whenever the ‘QQJT[§XJ>>O test was v1olated
‘the value of 'gJ O Xy l was appreciably smaller than the value
gJ ]A;xJ 1 l (two to three orders of magnitude smaller). That
-’is, on successive iterates on which zggTéxz,/O, the value ofl
gTA>x was changing by,zero to one—tofa-half orders of magnitude,

_ whereas it changed by at least two to three orders of magnitude

when the test was violated.

Note that to cause gJTcxxJ to increase toward

gJ?Tﬁ‘XJ~I , one need only increase the value of the search
'f'parameter, which is the same remedy for the LngT£§XJ>-O violation.

Thus, the following test was employed before the computation of

-

e L . |
S 1008 T AX. £80; AX | (3.

| ‘ &g JS8g-16%g.10 - - .
i.e., if_gJTA,XJ is at least 100 times greater than gJ_szxxJ_1,'
then the stersize is increased and a decrease in gJTLLXJ is

TA}{<O is guaranteed on each 1terate

guaranteed. (Note that g
because of step (3).) For all the shuttle computations this
test always detected the AngTa,XJ:>O violation without.computation
of g(xy,,) for an unacceptable Xjpq = value.

The test (3.14) has not been proved mathematically and it

seens feasible that there exist cases when the test is satisfied
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by onJTAxX < 0 and/or the tolerance value of 100 is unsuitable
for other phy81cal situations. However, N8y zka muot be
computed in each iteration for the H-formulas, and thus, the

A ngJALXJ >0 1nequa11ty can always be checked and guaranteed In
any ‘case, no more computation is required than in +he orlglnal

- Fletcher's method since gJTz;xJ must be computed for other

_ formulas in the method.

' 315; Space Shuttle Trajectory Ovtimization

A nunmber of Spece Shuttle trajectory optimization problems
were simulated in the development of the algorithm, including
‘three aecent Droblems and a reentry problem. A comparison of

numerous algorlthms for the stage—and-half configuration ascent

v» 'Drob1em are presented here along w1th partlal results for a

pressure e-fed booster con f;g ration ascent prdblem. |
| The stage—and—half optimization problem involved‘eighteen
perameters (azimuth adjustment parameter,rpeyload, pitch angle
at the time when engines dropped, and fifteen pitch rates),
where payload is.to be maximized. The optimization is‘froﬁ ten
. seconds after liftoff to orbital insertion (SO x 100 with inclina-
tion snecified). The resulte for this optimization problem are
nresented in Tables 1 and 2. |

In Table 1 a comparison of DFP and the Modified Fletcher's
method is showvn for the_case of a reasonably good guess for the
initiai perameter vector._ The relatiuely small value of gTHg on
the fifty-second iterate of the DFP method indicates that the N
problem is reasonably cbnverged on that iterate. Considering the
fifty-second iterate of the DFP method as the converged_solution,
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four digit éccuracy is obtéined by DFP on the tﬁenty—éixth
: iterate and by the ﬁodified_Fletcher‘s Method on the thirtyéfi”st
iterate (with respect to payload and boundary condition satis-
faction). Since DFP requires more function evaluations and since
~a single gradient“dalculation corresponds roughly to eighteen
function evaluations, the computing times to reach the twenty-
 sixth iterate in DFP and the thirty-first iterate in Modified
Flet@hef are apprdiimately the same. As shown in Table 1, ten
more iterates are obtained for the Mbdified Fletcher's method in
the samé'amount of computer,time; However, DFP gets a lower
value for the cost in the same amount of computer time, thus
: exhibiting better terminal convergence. |

In Table 2 a comparisdn of six algorithﬁs is showm for a.
?oor.guess.of the initial parameter vector. In the first column
‘b'ﬁhe gradient method (with a 1-D search) is included to .show
‘:“the difficulty of obtéining good terminal cbnvergence in fhis
problem. The next two methods, DFP and Broyden, were the best
performers with Bfoyden slightly'better than DIFP. Note_thaf DFP
and Broyden give identical costs (to fourvdigits) in fhe early
iterates and then Broyden begins to get slightly lower costs; this

6 noticed. The last three

is.the sane charactéfistic Broyden
columns show three methods which use only a crude search} Modified
Fletcher; DFP with a crude search, and Broyden with a crude
search.' All three.methbds gave comparable results with Modified

. Fletcher obtaining the lowest cost in ten minutes computer time.

All three H-formulas satisfy the main property of Fletcher's

paper (i.el, #ef0,11), and for this particular problen probably
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give siﬁilar results because fhe H-matrix remains well-behaved.
‘Although these three methods are not better than DFP or Broyden
(vith searchés) on this probiem, they are appreciably better
than the gradient methpd and yet.do nof require extensive
programming. | ‘ |
Table 3 shows-an incomplete study of results thained for
the pressure—fed.boosﬁer shuttle ascent problem. In this problem
an eiemeht of the main diagonal of the H—matrix-in'the DFP method
became appreciably smaller than the other elements of the main |
diagonal in the early iterates. .This caused the 1-D search
~considerable trouble in obtaining a minimum, as'notedrby the
“large number of function evalﬁations (especially on the Srd, 4th,
‘and 5th ite?ates). in thié'particular problem the Modified
Tletcher's method performed better than the DFP method.in_ﬁhgi‘it
' fequired a qonsidefably less number of function evaluations and
.zdbtainea a lower cost value in the same number of iterates. UMNote
| howlfhe Modified Fletcher method uses both of the formulas on
this_problem (i}é.; Eq. (3.3) is used'6 times, Eq. (3.4) is used
5 tiﬁes)k o . | . ’
| During the course of the study a number of observations were
- made with respect to the performance of the algorithms and reports
of their performanée in'the literature. These are summarized
beléw. '~ | » | ,
“{1) The performance of the DFP method is strongly‘dependent
upon the 1-D search used. In the early part of the study;
the Modified Fletcher method required approximately the same

amound of computer time as DFP to obtain the szme cost on a
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number of different problems. Then a more sophisticated
search was used in thelDFP algofithm. The DFP method then
became a much better pefformer. This_explains how, in the
literature, numerous algorithms are reported to outperform
DFP, when with an efficient search DFP is clearly the better
'bérformer. (In Ref. 4, Fletcher's method is reported to
outperform DFP on a number of standard functions. However,
ﬁhen the twé were cbmpafed with the NASA-MSC PEACE DFP
program, DIP easily outperformed Fletcher's method ) |
.(2)’ In a number of papers in the ilterature, little
__emphasis is given to the expense of computing gradients as
opposed to function evaluations. For exémple, the IBM
Sqientific Subroutine10 version of DFP calculates a gradient
each time it evaluates the function. This calculation is
not serious on lbw—dimehsion, test type problems,vbut it is
xﬁremely important when realis£ic problems are éftacked
(especially problems ﬁhich'require numerical infegration for
the fﬁnction and grédient'evaluations). S
(3). In the early stages of the study, the effectléf
,reéetting to a'gradient sfep every so many iterates was
~ investigated.. On the problems considered herein it was not
found to be helpful; in fact, if was found to be.detrimental
in the terminal stages.of_convergence because the H-matrix |
" had to be rebuilt. Most of the example problems in the
literature Which‘gét improved convérgénce”with'reset are of

relatively low-dimension. (One theoretical advantage of
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reset is if it is dincluded in any stable H-matrix type
algorithm, then convergence can be proved for the same

class of functions for which convergence can be proved

for the gradient method.).



L. OPTIMAL PARAMETER GUIDANCE

Becauée of the success of thevDFP algorithm in solving
complicated Shuttle optimization problems, Ref. 11 proposes
that fhe DFP.algorithm ray be useful for on~board guidance.
A first approach'to the problem is also presented in Ref. 11.
| In this section ﬁe shall demonstrate the techﬁique of
kRef.'11 on a simple example, and réference some of the technical
llterature which is relevant to the areas of optimal neighboring
and parareter guidance. Recommendations and conclusions are
_ presented in Section 5. -

Con31der the follou1nw optimal control problem

Minimize: J = 2x ()% N S 195 )
Subject to: %1=u o x1(0)=x (0)=0 “ |
s Culgr, t=2 T (e2)

" The 0ptimal-¢ontrol may be detérmined by inspection as
u (tj =b,{i"1" L te[0,1) T

| o te (1,2]. " (4.3)
,Since the optimal control is a sequence of pieceﬁise constant
'ségments, it satisfies the requirements of the Johnson-Kamm (J-K)
guidaﬁce nominal control. The neighboring guidance function is

u(t) = oey [U(0)-U(1)] + U (1), (4.1
{1  t>a

is the unit step function'and CK1
0 tca ' : _

where U(a) =

oA, are the constant controls on the intervals [0,1), (1,21,

respectively. Of course, the values of5%1 andcxz yrould be.

updated during each guidance cycle.

10 o _
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Suppose‘(fo, X103 XBO), vith t ¢ (0,1), is obtained by
na?igational measurements and (to, X109 xao) is near some point
(t;x?(t),XZ(t)) on the nominal trajectory. Given the control
components dd,;%z (which'we shall show how to calculate latef),
the final values of X and X, are |

% (2) = o (1=t0) + xpo + &,(2-1) s

: s o
x,(2) = %, +zj‘ Loty (t=t) + x,] dt
+ j\a[d(t1)+xo+d(1t)]2dt (4.6)
Thus, the performance index is

Ileny) = 2(2> - 3ix, ¢ zf’ [ ot (tmty) + xmfdt_

+ ( el pt- 1) xpg x (1=t dt} ()

Rolerence 11 quggpsbs tnat this anpblOP of the guvdahcp .
parameters should be minimized on the ground before the flight
"to determine nominal values forcﬁ1,5&2 (in this case,

_C(1g —l,cxa = 0), and then form the linear feedback guidance

. (4.8)

functions

B

i

X2
where to is the time of the navigational measurement with
: . * ¥* * ¥*
t, (0,1). The nominal values Xy ol xi(t), xa(t), te[0,2]
and time varying gains Kij(t), te(0,1), te(1,2] are stored.
on-board. As noted in Ref.:12, the choice of clock time, to,
as the reference time in'Eq. (4.8) is usually noncptimal. .Pro—

cedures for determining the "west" index time are presented in
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Ref. 12, e.g.; the index time typiéally is the timelon the
reference tréjectory which minimizes the state space distance
between the measured state and nominal state trajectory. |

The neighboring optimal feedback gains Kij(t)'are deternmined
by expending the first-order necéssary conditions for a minirun

of'J(¢<1,0ﬂ2). That 1s, define

2J

: g“ (k’;\l; = —B_l_- ’ ga( ::\I;XO) = }\,2 (4'9)
On the nominal trajectory
‘ , % ¥ * %
8’1\03 %) = 0 s & ¢ 5x ) = 0.
Tron E (4 7), the eXp ssions for g;, g, are (assuming t0£:[0,1)~:
o } J ! 1 ’ | <~ 1 34
gy = 2 = 1? } [j [ofq(t=ty) + x;4)(t=t )dt
J91 - t
: o . o
+ j\? [ev 5 1) + c\1(1 t ) + x]O](1 ~t )at] (L.10)
?‘J. | 2 o
£, = = = 1 s L_1Yatd
02"755\,2 i f r (-t 1)+V\1 i to)+‘-lo}(u 1/(11:;

(£.11)

where S..} E is the bracketed term in Bq. (4.7).

C R
‘(- *
Formally, the expansions of 81 and gZ about (= ,xo) are

2 R ¥ N
~, _ st BN ) Lt ¢ o vl H
du(o) Xo) % 6 ( ) k& 2—; [ (76-"4' L dJ JA Zg{og OJD ‘Jo/’f
' . J =l . L -
which implies (upon solution fors{T,Cﬁzz):
‘ ' y . x 1
¥ U | N O TN
7 / ~N T N 4 1% D 1o
T8 R O \: ?’\t'\“ i\ [ 2 } N
ol | eSS el - 240 Kao” Xpp
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The existence of finite feedback gains is dependent upon the

N
existence of an inverse for [.bfL~‘ | . Define
| | 251
P = 54;: ‘(I\ 3 (L}'1LI')
, , « L - ‘ .
where g..,_{ is the bracketed term of Eq (4.7). Then,
. .DP > P o
_ - £ .1
gy = “.acﬁ & Sy (4.15)
- which implies
PR X 2P )z g 2P PP
P ST Wy, VX D,
— . KV A
-(-a{:‘: U_\“_ \ ::: .
—BC{: _j . Z_i qfr ’D’P '?)'P 2
| P Eon v ix P z+ 55,
o we*ocz- "2 raoz -0, _J

As t—»1, P=>0, '%P:L —> 0 vhich implies the gains become

{ iﬁfinite at the end of the constant:contrel interval.
In general, as noted in Ref.-11, the gains beceme infinite
~at eaeh constant control interval»endpoint. This is anaiogous
to infinite gains at the terﬁinal time in existing guidance schenes.
Sﬂnce conservatlve aTlowances are made for the 1n11n1te-ga1n-at t
Droblom in ex1st1ng guldance schemes, a similar procedure would
be necessary for the guidance scheme of Ref. 11 at every constant
central'intefval endpoint. Because of this the scheme woﬁld
lose much of its oﬁtimality, and probably not be competitive
with a physically based guidance scheme.

Another aspect of the scheme is that its normality or
controllability properties are probably poorer than existing

schemes. For example, in the example problem of this section, 
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if toé-(1,2]‘then onlylﬁne control parameter (c{z) is aVailablé.
In é general problem where tight terminal boundary conditions are
usually desired and the number of state variables is larger |
than the number of control variables (the usual case}, the
terminal phase would not have enough éontrol parameters fo
“influence ail of the terminal state variables. Thus, a ﬁbdified
termiﬁal phase would probably be rquired. |

In Ref. 11 it is noted that a considerable amount of
premiésion analysis would be required to compute the mafrices
réquired for the feedback gains because a forward infegration
~of the differential_equations4for the matrices would be required
from each guidaﬁce update time. Actually this computation can
be reduced to a single backward integration by use of adjoint

systems. That is, suppose

Xooa(e)x +B(E) , X(t) =X (4.17)
is tﬁe given matrix linear system. Define

AL | (4.18)
Then, o B = |
_g.-{ X) = 2B | » T (419)

or | | | {; | |
ZT(t:)X(t;) = ZT(tO)X(tO) + J; ZT(t>B(t)dt - (L.20)

Choosing ‘ - S o
'Z(t);I | I - (4.21)

and integrating (L. 18) backward with the boundary condition

(4. 21) defines Z(t). If the system is inhomogenous, then one

H -J_r‘

more backward integration is requlred to define Jff Z (t)B(i)db.
-0

After these backward 1nte{ratlons, the matrlx K(ua) for an
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arbitrary toe{[to,t;] is given by

L5F
e AN e

X(tp) = 2T (£ )X(t,) + f 27(t)B(t)dt. (4.22)

To conclude this sectionl;ention should bé madé of the
optimal parameter.guidance scheme of Ref. 13. jIanef. 13,
physically motivated parameters involved in analytical solutions
for subarcs of the total trajectory are updated by use of the
parameter conjugate gradient nethod on-board. Thus, use is made
of an accelerated gradient technique on-board, and the conjugate
gradient method was chosen because of less storage requirements
with_accéptable convergence properties. Eveh though the schene
of Ref. 11 was motivated by the excellent convergence properﬁies
of the DFP method in ground—based simulation, it does not employ
DFP on-board. TFurthermore, the only reason for associating the
scheme with DFP is because the nominal trajectory is computed

. More will be said about this aspect in.Section 5.



5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

1.) The modified Fletcher parameter optimization scheme
is an effective scheme for tragectory optimization-
Wthh does not require an elaborate 1-D search On
well-behaved problems, DFP gave better performance,
especially with respect to terminal convergence. |
‘The modified Fletcher method performed better.on
problems with ill-conditioned H-matrices. |

2.) The Broyden method appsars to be a promising new
methéd. A related possibiliﬁy isAthe Fletcher method
with a 1—D'search. A1l of these methods have been
built into the NASA-MSC PEACE program.

3.) It does not appear that acceleratéd éradient mefhods
have progressed tb the point where they would be
uséful for on~board optimal parameter guidance. For
such applications, fhey need to be improved in three
main areas: (i) elimination or near-elimination of
the 1-D search, (ii) guaranteed rapid terminal con-
vergence, and (iii) reduction of storage requirements
(the cbnjugate gradient method already satisfies thls
requirement). Since these areas are active research
areas, impro?ements should be expected.

. L4.) The neighboring optimal parameter guidance scheme

proposed in Ref. 11 does not appear to be feasible
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L2y

because of infinite gain and controllability problems,

in addition to the usual restrictions of a neighboring

optimal guidance scheme.

5.2 Recommendations

1.)

™
o

W
<

Perform further simulations with the Broyden and

- Fletcher (with a 1-D search) parameter optimization

schenes. -They should be especially effective on

problems where the H-matrix is ill~-conditioned.

Continue studying ways of eliminating the elaborate

1-D search from accelerated gradient parameter

- optimization schemes. This will hasten the use of

these schemes in on—boafd guidance.

The guidance scheme in Ref. 135 represents & reasonable
blehd of physical based guidance and on-board parameter
optimization. It appears that this same idea may be
appiicable in reentry guidance. For example, the
guidahce.scheme‘proposed in Ref. 14 is essentially a

parameter guidance scheme with pieced subarcs of

' approximate analytical solutions. Thus, the/possibility

of adapting a parameter optimization scheme to the

'scheme should be investigated.
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Davidon-F¥letcher-Powell

(43 minutes. Univac 1108; central differences)

A

Iteration
Numver el o,
i Cost Evaluations
0 13201 x 10 1
1 10640 x 10" 12
2 .10322 x 10! 4
3 .98038 4
.4 .21987 6
5 . 147202 IR
10 84552 x 10_ 6
20 . 84198 x 10" : 4
30 . 84187 x 10 ; 3
40 .84lgzx 10 5
52 /84181 x 107 ; 3
62 . I

Search
Parameters

646 x 10"42
L7013 107
L1610 x 10

. 440 _
.795 x 107
124 x 102
. 876 x 10!
. 326
.198 x 103
. 280 x 10'

df =t;gTHg

d“'af:O
-.79 %
-.90 x
-.68 x
-. 37 x
-.28 %
-.21 x
-.28 x
-.61 x
-. 36 x
-.48 x
-.79x

010913 x 10"
. 10595 x 10!?

. 57441
. 25564
.85738'x 107,
. 84427 x 10'l
. 84212 % 107,
. 84206 x 10

. 84204 x 10'1
. 84202 x 10

Modified Fletcher

Cost

.13201 x 1o}

10480 x 10’

No. of
Functicn

Evaluations |
1
5%
4%
5%
2%
2%
4t
2%
2%
27
2%
4x

125 x 10";
312 x 10

J156 x 1077
.195

. 195

.438 x
763 x
47T x
.298x 1
. 596 x
. 142 x

Search
Parameters

" *Used DFP formula (Eq. 3.3)

Tused Broyden formvla {(Eq.3,4 )

Table 1. Stage-And-Half Configuration; Good Initial x.

— el i R e
: Gradient Method . DFP Broyden Modified Fietcher] ~ DFFP - Broyden
Iteration (with search) |(with search) (crude search) | (crude search)
Number . No. of [No. of . No. off No.of | - . N(_::n of N:;;‘Lof
: n. ¥n.
Cost E?z;l Cost EF::L Cost EE};I. Cost F?val. Cost |mval| Cost |Eval.|
.0 1611 1 1611 1 1611 1 {1611 . 1 1611 1 1611 1
1 271.1 7 {271.1 7 {27l 1 7 1397.7. 1o% 1397.7 10 ]397.7. 10
2 54,65 5 13.75 4 13.75 4 34.64 st | 34.64 4 63.07 5
3 13.04 5 2.792 4 2.792 4 32.24 7% 32.27 K 30.72 6
4 10. 83 4 1,311 4 1,311 4 30.95 3% 28. 31 3 16.58 4
5 8.667 1 4 .8897| 4 . 8897 4 8.795 | 371 7.948 3 7.395 3
6 7.736 1 4 .2636} 5 .2636 5 6.003 31 5.571 3 4,426 3
7 6.922 ) 4 L1621 4 .1621 4 5.968 3¢ 4.809 3 3.422 3
.8 6.438 4 .1563| 4 . 1563 4 3.123 3*_ 3.429 3 3.241 3
9 6.123) 4 .15541 4 .1554 § 4 2.631 3f 2.850 3 2.388 4,
10 6.038 4 L1461 4 . 1461 4 2.420 3t 2.749 3 2.123 5
12 5.143 1 17 .1183) 4 .1183 4 2.205 3% 1.815 4 L4776 3
4 3.574 ¢ 17 .1046) 4 .1045 | 4 .8923| 4t 1.528 5 .4309| 4
16 2.891; 1¢f L0972 4 . 0967 4 .5323) 3% .4339}) 5 .36821 4
18 2.834% 17 .0923| 5 . 0921 5 .36631 3% .37411 3 .3238) 3
20 . 2.790: 6 .0888| 4 .0886 | 4 .3252} 3t .3619( 3 .3104{ 3
22 2.718; 4 .0875| 5 .08731 5 .3092| 3T .3485] 4 .- —--
30 , 2.4571 4 .08553| 6 .08551, 5
50 1.739} 25 .08516] 6 . 085085 6 (10 min., Univac 1108; forward differences)
60 1.727| 4 .08490] 5 .08485‘i 4
(Appri)x. 40 min., Univac 1108; forwarddifferences)
|

% Used DFP formula (Eq. 3.3)

Table 2.

Stage-And-Half Configuration; Poor Initial x.

TUsed Broyden formula {(Eq. 3.4 ).
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Iteration
Number
Cost
0 1.058
1 1.058
-2 1..057
3 1.056
4 1.056
5 1.053
5 . 1.050
7 - 1,024
8 1.001
9 .9883
10 .9615
11 .9592
15 .9547
20 .9378
34 .9360

Davidon-Fletcher-Powell

Number of
Function
Evaluatians
1
4
5
26
37

TR R T N -

n
N

Search
Parameter

107*
1072
107
10
10!

.25 x
.95 x
.35 x
.68 x
.10 x
i .93 x
.84 x
.68 x
.21 x
L16x
.44 x
.94 x
.10 x

10"
101
10
102
10}
10!
10!
108

(22.5 min., Univac 1108; central differences)

|

|

1.058
. 058
. 057
. 057
. 056
. 056
.033
.029
.9816
.9751
.9607
.9554

bt bt bt ek ot ot e

Cost

Function
Evaluat_ioys
1
5%

7%
31
b
11x
4%
3%
3%
31
31
37

..127;

Modified Fletcher

Number of ;

Search
Parameter |

.12 x
.78 x
.78 x
.48 x
.95 %
.24 x
12 x

12 x
V12 x
.12 x

|
(7 min., Univac 1108; central
differences) l

#Used DFP formula (Eq. (3.3).

1Used Broyde

Table 3. Ascent Problem with H;Matrix Tending to Singularity in DFP Method.

n forrala (Eq.3, 4 ).




